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Abstract

The convergence of the output of a deterministic recursive algo-
rithm with transient errors is proved. This result is mostly implicit
in the proof of a stochastic approximation result by Fradkov that has
never been translated into English. A gap in Fradkov’s proof is fixed
but only for the scalar case. Fradkov’s restriction to monotonically
decreasing weight is avoided.

In this note, we present a result on the convergence of a deterministic al-
gorithm of Robbins-Monro form ((4) below) with transient error ((3) below).
In its essentials, this result has been extracted from the proof of Theorem 3.17
of the monograph by Derevitzkil and Fradkov (1981) (hereafter DF') concern-
ing the almost sure convergence of a stochastic approximation scheme. In
DF, this theorem and the sequence of Lemmas P.12-P.16 that constitute its
proof are credited to Fradkov. Although formulated differently, Lemma P.12
can be interpreted as reducing the proof the convergence of the stochastic
approximation method considered in Theorem 3.17 to the proof of a result
like the Proposition below.

Our Proposition avoids the hypothesis of Fradkov’s theorem that the
weighting sequence 6; decreases monotonically. DF explicitly refer to this
hypothesis only in the proof of Lemma P.12 and there is only one place in
the proof of the subsequent lemmas where additional discussion is needed
if monotonicity is not assumed. However, there is a gap in the proof of
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the main supporting result, Lemma P. 16, that cannot be bridged without
additional restrictions except in the case of sequences 6; of dimension d = 1.
For this reason, the Proposition and the final lemma of its proof, Lemma 5,
are restricted to scalar case. The gap is described after the proof of Lemma 5.
Although the sequence of lemmas and proofs given below follows closely the
sequence of lemmas and proofs used by DF, our presentation provides greater
precision in both statements and proofs of the lemmas. Because an English
translation of DF is not available, and because our assumptions (2) are the
least restrictive assumptions possible for §;, which significantly increases the
applicability of the Proposition, it seemed worthwhile to give complete details
as we do in this note. An attractive feature of the Proposition is that it can be
applied to the analysis of recursively estimated time series model parameters
in the situation of a misspecified model. In this situation parameter estimates
need not converge to unique limits, see Section 4.3 of Findley, Potscher, and
Wei (2001) for a survey of the relevant literature. Some rigorous convergence
results for time series model parameter recursions whose proofs utilize the
Proposition can be found in Cantor (2001).

Because only the final lemma used prove the Proposition requires the
recursively defined sequence 6; to be scalar, we shall use a general nota-
tion to obtain full generality in the statements and proofs of the preceding
lemmas. For a d-dimensional column vector x = (xy,... ,xd)T, we define

1/2
|z|| = (Zle xf) & For a d x d matrix M, we define || M| = A/ (MTM),
where \,.x denotes the largest eigenvalue.

PROPOSITION. Let © denote an open subset of the space R of d-
dimensional real column vectors. Let f: © —— RY be a continuously dif-
ferentiable function on © with the following properties:

(a) The set Oy = {0 € © : f(0) =0} is nonempty and compact.

(b) There is a bounded open subset Oy of © containing ©y on which
there is a twice continuously differential function V: ©y —— R such that,
for all 0 ¢ Oy in Oy, the derivative VV = (dV/d6y,...,0V/80,4)" has the

property

vV (0)" f(0) > 0. (1)
Suppose that for some sequence of real numbers d;,t > 1 satisfying
(St 2 O,tlim 6,5 = 0, Zét = 00, (2)
& =0



and for some R%-valued sequence w, satisfying

lim w; = 0, (3)

t—o0

the sequence 0y, t > 1 in © satisfies
Or =01 — 6cf (0i1) + Orwy (4)

for t > 2 and enters Oy infinitely often but has no cluster point on the
boundary 00y of Oy.
Under these conditions, when d = 1, every cluster point of 0, belongs to

©p={0€O:f(0)=0}. That is, as t — o0,
9,5—)@0. (5)

In particular, if ©g = {0}, then lim; .o 0; = 0.

The proof is obtained via a sequence of lemmas and the following obser-
vations. First, the assumptions of the Proposition yield that:

(i) There are only finitely many # such that 6y € ©y butfy,, ¢ Oy.
Otherwise, since Oy is bounded, a subsequence 0,/ of 0, would have a limit
0, with 8 ¢ 9Oy, by assumption, so § € Oy. By continuity, lim_., f (0) =
f (5), and (4),(2), and (3) would yield limy o {0411 — O} = 0, and there-
fore limy_o0 01 = 0, and hence that 0., € Oy for ¢ sufficiently large
(because Oy is open), which contradicts the definition of the 6, sequence.
Consequently, there is a time ¢y such that

0, € Oy, t > ty. (6)

For the subsequent discussion, we shall always assume that t > ty,.
(ii) It follows from (6) that the sequence 6, is bounded. Hence its set of
cluster points,

K = {5 :0 = lim @, for some subsequence y of Ht} ,

t'—o00

is nonempty and compact. Since K N9Oy is empty, K C Oy. Consequently,
there exist p, ( > 0 depending only on K such that for each 6 € K, the closed

ball B(0,2p) = {0 € Oy : ||0 — 0| < 2p} has the properties that
B(0,2p) € Ov, (7)
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holds, and, for any point #* on the boundary 00y of Oy, also
min |6 — 6% = ¢. (8)

0€B(0,2p)

It follows from (8) that the closure K = K (p) of U, B(0,2p) is a compact

subset of Oy containing K in its interior, K C IntK. By the continuity
of Vf(0), L = max,;|[|Vf(0)| is finite. Hence, from the Mean Value
Theorem and the convexity of B(6,2p), and we have

1 (0) = f (@) < L |6 — ¢ (9)
for every 6,0 € B(0,2p) when € K.
For any sequence 8, satisfying (2), we define, for every A > 0,
ta =min{tg: 6 + 611 < A forall t > to} (10)
and, for every t > ta
ua (t) =max{u >t: 6+ - -+ 06, <A} (11)

Because > 72, 6; = 0o, we always have ua (t) < co. Also, ua (t) >t + 1.

Lemma 1 . For any sequence é; satisfying (2) and any A > 0, we have

ua(?)
lim A — ug:t Ou (12)
Proof. If not, there would exist A, > 0 and a subsequence 6, such that
A=30e t, )6, > 2 held for all . But if we choose ¢, so that (5,5 < ¢ whenever
t > t., then for ¢ > max {t.,ta}, we would have A — "2 t, DHls, >e > 0,
contradicting the definition of ua ().

Lemma 2 . (¢f. Lemma P.13 of DF). For each p > 0 such that (7) and (8)
hold, there exists a Ag = Ag (p) such that for every 0 < A < Ay and any
e K, if

o~ < p. (13)
holds, then so does

sup 0| <2p (14)

t<u<un (t)

for every t > ta, forta and ua (t) defined in (10) and (11).




Proof. We use induction to establish (14). Let ¢t < v < ua (¢) be such that

sup
t<u<v

(This holds for v =t from (13).) From (4),

0, — 0| < 2p. (15)

Opi1 =0y — Z busrf (0u) + Z Out 1 Wy 1

—0, — f:(suﬂf () + iéuﬂ {£(0)=F00)}+ i&uﬂwuﬂ. (16)

Note that with ra (f) = A max,>; |w,|, we have

Z but1Wytt|| <

u=t

maXx
t<v<ua(t)—1

It follows from (16) and (9) that

b= < o] A )+ ra )5 23 s o 7]

Therefore, from an induction argument or from the Discrete Bellman-Gronwall
Lemma (Solo and Kong, 1995 p. 315) and the fact that e > 1 + x for any
x > 0, we have

b= < {J0 =]+ 8 @) 7 0} TT 0 + 2000

= {Het —@H +A Hf (E)H +ra (t)} el Dy But
<{lo=a+ 5 (s @) +maslu) > a9

u>t

Define Ay (p) to be the largest Ay for which
4 —
LA <log =, Ay (r_nafo (H)H + max |wu|> < p/2 (19)
3 0cK u>1
holds. Then for each A < Ag(p) and t > ta for which (13) and (15) hold,

it follows from (18) and (13) that ‘9v+1 - 5” < 2p. Thus, by induction (14)
holds for all t > ta, A < Ay (p) for which (13) holds, as asserted.




Lemma 3 (c¢f. Lemma P.1} of DF). For 0 € K, p as in (7) and Ay as in

(19), and any 0 < A < Ag and t > ta such that (13) holds, we have

HuA(t) =0:—f (@) A+ il (t7 A) +q2 (t7 A) )

(20)

where q; (t, A) has the property that there exist constants C1,Cy such that

las (1, 8)] < CLA [0, = ]| + Car?,

and qo (t,A) satisfies
Jlim gz (£,A) = 0.

Proof. From (4), we obtain

fua = Qt—f@)M(A—%(ﬁt—léwl)f(?)
+ il Surt {f (0) — £(0.)} + u/?;tl SuerWusn.
Set o
a(tA)= 3 bun [£(8) - 70},
and o

UA(t)_l _ UA(t)—l
¢ (t,A) = (A - > 5u+1) f (9) + > buriWuir.
u=t u=t

From (9) we have

uA(t)—l

lgn A< L D0 bur || — 0
u=t
and from (18) and (19),
ua (t)—1 _ _ ua (t)—1 _
> Sust [fu =8 = b [0 =B+ X Suia|fu -]
u=t u=t+1

(21)

(22)

(23)

(24)



< i Het — 5”

ua (t)-1 EANGES! _ A
+{ Surr |00 =] + ( P m) A (rggguf @) +r3§;<rwu+1l> } e

u=t+1

0eK

4 A _
< 5 =]+ 5 (]l ()] mae o)

This yields (21) with

3 u>1

o =3n o= %L <renea£<Hf ()] + max|wu|> . (25)

The assertion (22) concerning g¢o (t,A) follows from Lemma 1, 6, — 0,
Maxge Hf (9)” < 00, and

uA(t)—l

Z 6u+1wu+1

u=t

< A lim max ||Jwy| =0,
t—oo u>t+1

lim

t—o00

by virtue of (17) and (3).
The final two lemmas use the properties of V' (6).

Lemma 4 (c¢f. Lemma P.15 of DF). Suppose 6 € K is such that f (5) #0.

Then for each subsequence 0y converging to 0, there exist Ao > 0 and n > 0
with the following property: for each 0 < A < Ag there is a t' (A) such that
for allt’ >t (A), the inequality

V (Buniy) <V (00) = nA (26)
holds.

Proof. Let p > 0 be such that (7) and (8) hold. For each 0 < & < p, let
Ag (g) be the largest Ay for which (19) holds when p is replaced by €. For
A < Ag(g) consider a t' > ta such that Hﬁt/ — 5” < ¢ holds, and therefore

(UHU At) — 5” < 2¢ by Lemma 2. To simplify notation, set ' = 6y and 0" =
ua(')- By taking Taylor expansions of V and VV, we obtain

V(O") =V () =VV () (¢ -7
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= vV (8) (@ —8)+[VV () - vV (3)] ¢ 0
=V (0) (0" —0)+(¢-0) VPV () (0"~ 0) (27)
with ¢ € [0/,0"] and ¢’ € [¢,0]. ([0/,0") = {af'+(1—a)0":0<a <1},
etc.) Since B (@, 25) is convex, (,(' € B (5, 25). From Lemma 3,
0" =0 =—f(0) A+ qi (t,8) + g (¥, ), (28)

where

g (, A)]] < CrAe + CoA?
with C1, Cy given by (25), and where limy_ 2 (#, A) = 0. Since 0 ¢ Oy, it

follows from (1) that VV/ (g)Tf (5) =, > 0. Let n satisfy 0 < n <7, and
set 7 = n; — 1. Substituting (28) into (27), we obtain

V(") -V(0)=-mA
—(¢-8) vV () f ()

+ {vv (8) +(c-9) v (g’)} NN

4 [vv (8) +(c-9)" vv (g’)} NCNY (29)
Set
Ly =max[[VV (O)], L =max |V (0)] (30)

and C3 = Ly 4+ 2pLy. Now choose € small enough that

2eLymax |f (0)] < 2L, C1Cye < 2

0cK 3 6
and also so that _
OQC,?,AO (5) < g

Then, for any 0 < A < Ag(e), if we choose t' (A) > ta so that ¢ >
t' (A) implies
o] <



and 5
Cagz (1, 8) < 44,

it follows from (29) that
V(") <V (0)—mA+7A=V(0)—nA,
holds when ¢’ >t/ (A), as asserted.

The final lemma is the first to require d = 1. Under this condition, for
every § € Oy for which f (5) # 0, it follows from (1), the Mean Value
Theorem, and the continuity of VV () that there exist m > 0,p > 0 such
that

V() -V (0)]=m|o-7| (31)

holds for all 6 € B (8, 2p).
Lemma 5 (¢f. Lemma P.16 of DF). Under the assumptions of the Propo-
sition, no point 0 € Oy for which f (5) # 0 can be a limit point of 0.
Therefore K C Oy.
Proof. Suppose, to the contrary, that there is a § € Oy with f (5) # 0
(and therefore with n, = VV (g)T f (5) > 0) which is a limit point of 6;.
Choose p so that (7) and (8) are satisfied, and also so that

f(0)#0 (32)

and (31) hold for all 8 € B (5, 2p). For Ay as in the proof of Lemma 4,
choose A, 1y > 0 so that

A <min{Ag, pm}, 1y < min{n,,1}. (33)

Then Lemma 4’s proof shows that, for any subsequence 6, that converges to
0, the inequality
V (0usier) <V (00) = mAs (34)

holds for all ¢’ large enough. The sequence of values 0,, () appearing on
the Lh.s. of (34) does not necessarily change with ¢'. Since §; need not be
monotonically decreasing, all that can be asserted is that for t” > t' > ta,
one has ua(t") > ua(t’), with ua(t”) > ua(t’) holding for t” > ua(t'). The
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latter inequality guarantees that 0, ) takes on infinitely many values of 0;.

From this fact and (34), and from V' (6,) — V (5), we can conclude that, for
a given 0 < n < 1,, the sequence 0, enters each of the disjoint sets

Roa = {9 €B (5,2p) :V(0) < V(@) —nA}
and
Sypn = {9 e B(3.20):V(6) >V (9) - gA}

infinitely often. Let 6. denote the subsequence of last values of 0; in R,a
before a next entry 6/, in S 1nA- Some subsequence 6, of 6, must have a

limit 6. Since V (f,ri1) >V (5) —nAand V (6,741) —V (6,+) — 0, we must
have V (é) =V (5) — nA. Therefore, from (31) and (33),

0 — 5” < p. (35)

Thus, f (é) # 0 by (32). With Ay (p) as in Lemma 1 and L, as in (30), we

can conclude from Lemma 4 that there exist A > 0 satisfying

A<umn{§5%fo0@ﬁ, (36)

and 0 < 7j < 1 and 7 (A) > tz such that V (6 () < V () — A holds
for all 7/ > 7" (A) Hence

V (Ouremy) <V (0) = nA —FA, (37)

Because 0.~ — 6, we can, by taking a larger 7 (A) if necessary, further
obtain

0,0 — ] < A, (39)

for all 7" > 7" (A), and therefore, from Lemma 2, also

max
T”Suguz (")

0., —0|| <24 < p. (39)

Due to (35), the last inequality shows that
0., € B (5, 2p) , 7 <u <ux (7). (40)
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With (37), this yields the key result: Ou () € Bya. Since 0 is alast value in
Rya before an entry in S1,5 at time 77 +n", we must have 7" +n" < ug (7")
whenever 7" > 7" (A) For these 7", it follows from (38), and (39) that
16+ — O] < 3A. Therefore, from (36), we have

V (97'”+n”) S V (07.//) —+ |V (97_//) — V (07'”+n”)|

< V(0) = A + Ly [0 — 07|
<V (@) —nA +3AL,
< v(9)- gA,

by virtue of (36). But this contradicts 0,/ ,» € S 1ya- Thus the proofs of
Lemma 5 and the Proposition are complete.

Remark 1. The gap in the proof given in DF is the lack of verifica-
tion of (40), which seems to require a condition that forces HH - 5” to be

small when ‘V 0)—-V (5)‘ is, as (31) does. No such condition is imposed
in DF. When d > 1 and § € Oy is such that VV (@) # 0, the level sets
{9 €Oy :V(O)=V (5)} will be nonempty, so (31) will fail for every m > 0.

Remark 2. In the case d = 1, any antiderivative of f(6) has the properties
required of V' (#) in (b) of the Proposition, so (b) is not restrictive.
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